Passive Intermodulation in Microwave Filters: Experimental Investigation

Giuseppe Macchiarella(+) , Alessandro Sartorio (+),
(+) Dipartimento di Elettronica e informazione del Politecnico di Milano
(++) Forem (An Andrew Company)

Outline

- Overview of physical mechanisms in PIM generation
- PIM in microwave cavities and filters
- Experimental investigation of PIM produced in coaxial cavities
- Evaluations of PIM in filters and duplexers through non-linear circuit simulations
- Some case histories
- Conclusions
Generation of PIM in microwave cavities

1) **Due to the materials**
 - Ferromagnetism
 - Contacts between metals (even identical!)
 - Galvanic Silver plating (?)

2) **Due to the cavity structure**
 - Shape and dimensions
 - Tuning structure
 - Input/output coupling system
 - Input/output connectors

Passive Intermodulation (PIM) and base station combiners

Passive intermodulation in cellular base station duplexers arises from the very weak non-linearity produced in the filters cavities.

Intermodulation generated by the TX filter may fall into the RX band; then, reaching the LNA input, it worsen the overall performances of the system.

GSM Frequencies
- TX Band: 935 – 960 MHz
- RX Band: 890 – 915 MHz
Passive Intermodulation Typical Requirements

<table>
<thead>
<tr>
<th></th>
<th>Input power</th>
<th>PIM in RX band</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSM</td>
<td>2 x 43dBm</td>
<td>-120dBm (3rd order)</td>
</tr>
<tr>
<td>PCS 1900 DCS 1800</td>
<td>2 x 47dBm</td>
<td>-118dBm (3rd order)</td>
</tr>
<tr>
<td>UMTS</td>
<td>2 x 46dBm</td>
<td>-120dBm (7th order)</td>
</tr>
</tbody>
</table>

Experimental study on PIM generated by microwave coaxial cavity

Purpose:
To investigate the dependence of PIM on the cavity parameters

Methodology:
Fabrication and measurements on suitably designed test cavities

Question:
How to design the test cavities?
A simple circuit model for describing PIM generation in resonators

Heuristic Assumption: non-linearity associated to the cavity dissipation

\[
L_{eq} = \frac{1}{2} \frac{\partial X}{\partial \omega}, \quad C_{eq} = \frac{1}{\omega^2 L_{eq}}, \quad R_p = R(i)
\]

\[
Q_0 = \frac{\omega_0 L_{eq}}{r_0}, \quad Q_L = \frac{\omega_0 L_{eq}}{2R_0 + r_0} \equiv \frac{\omega_0 L_{eq}}{2R_0}
\]

\[R_p\] is a non-linear resistor described by the following I-V characteristic:

\[
v = r_0 \cdot i + r_3 \cdot i^3 + \ldots \equiv r_0 \cdot i \cdot \left(1 + x \cdot i^2\right) \quad x = \frac{r_3}{r_0}
\]

Two-tone characterization

\[
X(f) \equiv X(f_0) \left[2\left(\frac{f}{f_0} - 1\right)\right] = X(f_0) F_n(f)
\]

Input tones:

- Frequencies: \(f_1, f_2\)
- Amplitude (volt.): \(V_0\)

Input available power (\(P_{av}\)): \(V_0^2 / 8R_0\)
Simplified circuit analysis

Output power at \(f_1, f_2 \):

\[
P_{k(1)} = \frac{P_{av}}{(1 + Q_L/Q_0)^2} \alpha_k^2
\]

Output power at \(2f_1 + f_2 \) (PIM):

\[
P_{k(3)} = \frac{9 P_{im}^3}{4 P_x^2} \left(\frac{Q_L}{Q_0} \right)^{2k} \left(1 + \frac{Q_L}{Q_0} \right)^6
\]

\[
\alpha_k = \frac{1}{\sqrt{1 + \left(Q_L F_n (f_{k(1)}) \right)^2}}, \quad P_x = \frac{1}{2} \frac{f_0}{x}, \quad A_k = \frac{\alpha_k \alpha_2}{\sqrt{1 + \left(Q_L F_n (f_{k(3)}) \right)^2}}
\]

Evaluation on PIM with the simplified model

Model parameters:

- Resonant frequency \(f_0 \)
- Loaded and unloaded Qs
- Intrinsic PIM (\(P_x \))
- Input power

\[
(P_{th})_{dBm} = 3(P_{dir})_{dBm} - 2(P_x)_{dBm} + 40\log \left(\frac{3 Q_L}{2 Q_0} \right) - 60\log \left(1 + \frac{Q_L}{Q_0} \right) + 20\log (\alpha_k A_k)
\]

For an ideal cavity (\(r_2 = 0 \)): \(P_x \rightarrow \infty, \ P_{IM} \rightarrow 0 \)
Dependence of P_{IM} on the model parameters

- Decreases of 2 dB/dB with P_x
- Increases with Q_L/Q_0 for $Q_L/Q_0 << 1$, then decreases
- Increases of 3 dB/dB with P_{in}

Parameters to be varied in the test cavities

- Unloaded Q (cavity volume)
- Loaded Q (Input/Output coupling level)
- Intrinsic non-linear parameter P_x:
 - cavity shape
 - coupling structure
 - tuning element
 - Silver plating
Physical structure of the test cavities (GSM TX band)

Cavity type: Coaxial with capacitive loading
Outer cross section: square
Tuning element: screw into the inner conductor

Dimensions of the built cavities and varied parameters

- Width of the cavity: 22.5 or 45 mm (changes Q_0)
- Section of inner conductor: circular or square
- Input/Output coupling: capacitive or inductive (tap).
- Loaded Q: 15, 25, 40 (by changing the in/out coupling)
- Tuning: with or without the screw

Total built cavities: 30
Does filter plating affect PIM?

Skin depth in silver around 1 GHz is about 1\(\mu\); so 5\(\mu\) of silver thickness should be sufficient (no contact between different conductors). However:

- The realizable silver thickness is not uniform inside the cavity (less at the bottom)
- Irregularities and impurities on the surface are possibly generated by the plating process
- Contacts between silvered and not-silvered parts become unavoidable (tuning screws)

Conclusion: PIM has been measured before and after silver plating the test cavities (5\(\mu\) tick.)

PIM Measurement (two-tone test)

Measurement test set: Summitek mod. S1 900A (transmission set-up)

![Diagram](image)

Instrument noise floor: -130 dBm

Choice of the two-tone frequencies

- Tone \(f_1\) must be near the lowest end of the TX band (935 MHz)
- Tone \(f_2\) is around 956 MHz, in order to obtain the lower 3\(^{\text{rd}}\) order intermodulation product inside the RX band (< 915 MHz)
- Cavities are tuned at about \((f_1+f_2)/2\)
Measurement results (sample)

Comments on measurement results (1)

- PIM dependence on Q_L seems similar to that estimated by the model
- The increase of the cavity size reduces PIM (as Q_0 increases)
- The rod cross section (square or circular) does not seem to affect PIM
- Capacitive coupling has better performances than tap coupling
Comments on measurement results (2)

- Tuning screws strongly increase PIM (5-15 dB)
- Measured PIM after silver plating seems to increase (especially with tap coupling and tuning screws).

Dependence of PIM on input Power

3rd order polynomial model not sufficiently accurate!

Dashed lines: Slope 2dB/dB
Matching PIM vs. P_0

Non-linear function for the I/V characteristic:

$$I = g_0 \cdot \left(1 + k_1 \tanh(k_2 V)\right) \quad g_0 = \frac{B_{eq}}{Q_0}$$

$\begin{array}{c}
\begin{bmatrix}
33 & 34 & 35 & 36 & 37 & 38 & 39 & 40 & 41 & 42 \\
\end{bmatrix}
\end{array}$

Simulator: ADS (Harmonic Balance)

Conclusions (first part)

- For reducing intrinsic PIM of a cavity:
 - no tuning screws
 - no soldering in the structure (avoid tap coupling)
 - thickness of silver plating at least 3-5 times the skin depth (for avoiding the influence of the adhesive layer, typically realized with nickel)
- The dependence of PIM on Q_L and Q_0 has been demonstrated
- The shape of the inner rod (square or circular) does not seem to affect PIM
- A 3^{rd} order model is not sufficient to match PIM vs. P_0
Overall PIM generated in a duplexer

Reference Filters

TX FILTERS
- Lower passband frequency (MHz): 924.00
- Upper passband frequency (MHz): 960.50
- Return Loss (dB): 22.00
- Number of resonators: 10
- Unloaded Q of resonators: 2000.00
- External Q: 24.65
- Number of Transmission Zeros: 2
- Frequencies (MHz): 917.20 918.50

RX FILTERS
- Lower passband frequency (MHz): 878.00
- Upper passband frequency (MHz): 918.50
- Return Loss (dB): 16.00
- Number of resonators: 10
- Unloaded Q of resonators: 2000.00
- External Q: 27.18
- Number of Transmission Zeros: 2
- Frequencies (MHz): 924.50 926.30

Equivalent circuit for the resonators

\[R_0 = Q_0 \frac{2}{B_0}, \quad C_{eq} = \frac{B_0}{\omega_0}, \quad L_{eq} = \frac{1}{\omega_0^2 C_{eq}} \]

\[g_0 = \frac{B_0}{Q_0}, \quad g_2 = \frac{g_0^2}{2P_x} \]

- \(f_0 = 935 \text{ MHz} \)
- \(f_1 = 931.65 \text{ MHz} \)
- \(Q_0 = 2700 \)
- \(f_2 = 938.35 \text{ MHz} \)
- \(B_0 = 1.55 \text{ S} \)
- \(P_x = 100 \text{ dBm} \)
Duplexer linear response

N.B. Ideal inverter has been employed in the filters equivalent circuit

Non linear analysis (Harmonic Balance)

TX input:
two-tone (930 MHz, 950 MHz), 43 dBm/tone
HB analysis: 5 harmonics/tono, max mix order 9
Non-linearity in all resonators (both TX and RX filters)
PIM at RX out vs. frequency

Blue curve: non linearity in both filters Purple curve: non linearity in TX filter only

PIM is due to the TX filter only

Contribution to PIM from TX resonators

Only the first 4 resonators from ANT node give a contribute to PIM
PIM vs. Filters topology

Triplets close to the ANT node produce lower PIM!

Some Case Histories
Problems with silver plating

Poor silver plating: PIM 100dBm 2x45dBm

Solution: lateral hole to improve silver plating → PIM 115dBm 2x45dBm

Resonators design

Resonator too loaded and with thin ring
→ PIM 105dBm 2x43dBm

Solution: increase depth of cavity and resonator ring → PIM 120dBm 2x43dBm
Dissimilar metals

Stainless steel screws in silver-plated cavity
\[\text{PIM 110dBm 2x45dBm} \]

Solution: shorter screws
\[\text{PIM 125dBm 2x45dBm} \]

Conclusions:
“Good Rules” for making low PIM filters
- Wide resonator ring
- Deep cavities and not too loaded resonators
- No sharp corners
- No contact between dissimilar metals
- Attention to the position of cross couplings
- Short tuning screws in the cavities
 - Cleaning
 - Attention to solder joints
 - Good silver plating
 - Ensure good contacts